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The Knowledge-based Software Assistant, as proposed in Green et al. (1986), was conceived as an 
integrated knowledge-based system to support all aspects of the software life cycle. Such an 
assistant would support specification-based software development: Programs would be written in 
an executable specification language from which efficient implementations would mechanically be 
derived. A number of systems have since been developed, each providing assistance for individual 
software activities. This chapter describes research conducted in the course of developing two of 
these systems. The first, the Knowledge-based Specification Assistant (KBSA Project 1988; 
Johnson 1988), was specifically aimed at supporting the evolutionary development of 
specifications. The second project, ARIES (acquisition of requirements and incremental evolution 
into specifications), is currently under way. It provides integrated support for both requirement 
analysis and specification development. ARIES is jointly being developed with Lockheed Sanders.  

The original project report anticipated that specifications would evolve but did not describe the 
mechanism for such evolution. In part as a result of the work on the Specification Assistant, the 
current vision of an ultimate Knowledge-based Software Assistant embraces the notion of a 
formalized specification development process (Elefante 1989). In our approach, a description of the 
system to be built is created in a machine-processible form from the early stages of a software 
development project and is gradually refined and evolved to produce a formal specification 
together with supporting documentation. During this process, changes to requirements and 
specifications frequently occur and must be supported and managed. This chapter presents the 
mechanism that we have developed to support the process called evolution transformations. The 
chapter describes how evolution transformations can be employed in developing specifications, and 
compares this approach to other incremental specification techniques. We provide a detailed 
description of our representation of transformations and of our mechanisms for retrieving and 
applying them. Our current efforts at reorganizing the transformation library into basic operators 
and macrooperators are summarized. The chapter concludes with a discussion of how evolution 
transformation technology can be applied to other software development tasks. 
 

Evolution Transformation 
 
During the specification development process, a system description undergoes well-defined 
semantic changes (Goldman 1983). New details are added, revisions are made to resolve conflicts 
between definitions, and high-level requirements on overall behavior are transformed into 
requirements on the behavior of individual system components. Evolution of the system description 
continues as a system is maintained. To support evolution, we have constructed a library of 
transformations for modifying specifications. This library consists primarily of so-called evolution 
transformations, that is, transformations whose purpose is to elaborate and change specifications in 
specific ways. Like conventional correctness-preserving transformations (also called meaning-
preserving transformations), they can be invoked by the user or by other transformations, and they 



are executed by a mechanical transformation system to cause changes to a specification. 
Correctness-preserving transformations are generally applied to derive efficient implementations 
from specifications, keeping the meaning of the specification unchanged; in contrast, our evolution 
transformations deliberately change the meaning of specifications. We do, in fact, include some 
meaning-preserving transformations in our library, but instead of deriving efficient 
implementations, their purpose is to reorder specifications (for better presentations), rewrite 
specifications into equivalent forms using different language constructs, eliminate redundancies, or 
make explicit some otherwise implicit specification features. Some of these transformations can 
also appear in a transformational implementation system, to be used to replace high-level 
specification constructs with low-level implementation ones. 

Our evolution transformations perform semantic changes, such as revising type hierarchy defined 
in a specification, changing data-flow and control-flow paths, and introducing processes to satisfy 
requirements. A single transformation can perform a number of individual changes to a 
specification; for example, if a definition is changed, all references to this definition throughout the 
specification can be changed in a corresponding manner to retain semantic consistency. 
 
Advantages of Transformational Evolution 
 
The evolutionary development of specifications by transformation has several advantages. First, 
because the transformations mechanically take care of low-level editing details, changes can be 
succinctly directed and reliably performed. This result is analogous to the advantage of using 
conventional correctness-preserving transformations for deriving efficient implementations from 
specifications, cogent arguments for which can be found in Balzer, Goldman, and Wile (1976) and 
Bauer (1976). 

Second, the transformational development of specifications facilitates the separation of concerns 
during the analysis process. The initial analysis of requirements can focus on modeling the system 
environment and describing the effects that the intended system will have on this environment. 
These effects can be stated with little regard for the particular design that will achieve them. As a 
separate activity, the analyst can then propose a design and transform the requirement statements 
into constraints on the design. Evolution transformations have two distinct roles in this process: to 
aid in constructing the initial model of environment and requirements and to transform the 
requirements into specifications in a way that preserves the meaning of the requirements as much 
as possible. 

Third, the record of transformation steps preserves the history of how high-level requirements are 
developed into lower-level specifications. This approach provides traceability, which is helpful for 
understanding the resulting specifications and assuring that all the original requirements have 
suitably been incorporated. 

Fourth, the transformation record can be undone and replayed, permitting the exploration of 
different specification choices. This approach permits a developer to explore several (relatively) 
unrelated evolutions to the same specification, with the resulting separation of concerns and its 
attendant benefits. To do this exploration, the same starting specification is separately evolved into 
several specifications, and the transformational record is kept in each case; the resulting (multiple) 
specifications can then be combined by serially replaying all of the transformations on the initial 
specification (Feather 1989a). The same method also permits multiple developers to independently 
make changes to a common specification, combining their changes later. Where the separate 
evolutions are not, in fact, independent, comparison of the transformations can reveal the 



interference (Feather 1989b). This development model was extended to the case in which the 
separate evolutions describe different users' conflicting requirements, and negotiation techniques 
are utilized to resolve the conflicts (Robinson 1989). 

Last, when a specification has been transformed into an efficient implementation and is later to 
be changed, conducting the change through the use of evolution transformations can facilitate the 
replay of the original transformational development on the changed specification (Feather 1990). 
 
Developing a Library of Transformations 
 
We began our exploration of evolution transformations by concentrating on two problems, a patient 
monitoring system and an air traffic control system, and manually worked out development 
scenarios to discover what transformations were necessary. We then implemented general-purpose 
versions of these transformations, which could be applied to mechanically achieve these 
developments. The result of this exploration was a sizable library containing about 100 
transformations of a wide variety of types. This library is significantly more extensive than similar 
libraries developed by Balzer (1985) and Fickas (1987). In addition, although other researchers 
have studied evolution steps similar to those captured by our transformations (Narayanaswamy 
1988; Johnson 1989), they have not developed transformations to enact these steps. 

The ARIES system expands on this work; we are developing a transformation library that is 
extensive enough and powerful enough to apply to a wide range of specifications. Two issues have 
been of particular concern in the current work. First, a method is needed for characterizing the 
effects of evolution transformations. This method is necessary to ensure the coverage provided by 
the library (that is, to determine what range of transformations is required in the library for it to 
support a wide range of analyst activities) and to retrieve from the library (that is, retrieve the 
appropriate transformation to make the desired specification change). Second, we need to be able to 
apply transformations to specifications expressed in a variety of notations. Whereas the 
Specification Assistant operated only on specifications expressed in the specification language 
GIST (Goldman et aI. 1988), ARIES supports a wide spectrum of other notations, including 
hypertext, flow diagrams, stale-transition diagrams, and domain-specific notations. We needed a 
common internal representation capturing the semantics of all these notations. By applying the 
transformations to the internal representation, the same transformation library can be applied to 
specifications expressed in a variety of notations. 

The solution to both problems required identifying the different semantic dimensions embodied 
in a specification. The ARIES system internally represents specifications as descriptions along each 
of these dimensions. These descriptions are relatively independent of any particular notation that 
might be used to express these semantics. This arrangement provides a means of characterizing the 
effects of transformations: Each transformation performs specific changes to one or more semantic 
dimensions of the specification. Adequate library coverage can then be achieved by making sure 
that all possible changes along each semantic dimension are supported. Notation independence 
makes it possible for analysts to use the same transformations to edit different notations. When an 
analyst proposes a change to a particular view of a specification, this change can be along one or 
more semantic dimensions, which, in turn, can suggest appropriate transformations to apply. 
 

Related Work 
 



Burstall and Goguen (1977) argue that complex specifications should be put together from simple 
ones and developed their language CLEAR to provide a mathematical foundation for this 
construction process. They recognize that the construction process itself has structure, employs a 
number of repeatedly used operations, and is worthy of explicit formalization and support-a 
position that we agree with. 

Goldman (1983) observes that natural language descriptions of complex tasks often incorporate 
an evolutionary vein: The final description can be viewed as an elaboration of some simpler 
description, itself the elaboration of a yet simpler description, and so on, back to some description 
deemed sufficiently simple to be comprehended from a non-evolutionary description. He identifies 
three dimensions of change between successive descriptions: structural, concerning the amount of 
detail the specification reveals about each individual state of the process; temporal, concerning the 
amount of change between successive states revealed by the specification; and coverage, 
concerning the range of possible behaviors permitted by a specification. We were motivated by 
these observations about description to try to apply such an evolutionary approach to the 
construction of specifications. 

Fickas (1986) suggests the application of an AI problem-solving approach to specification 
construction. Fundamental to his approach is the notion that the steps of the construction process 
can be viewed as the primitive operations of a more general problem-solving process and, hence, 
are ultimately mechanizable. Continuing work in this direction is reported in Robinson (1989) and 
Anderson and Fickas (1989). Fickas and his colleagues have concentrated on domain-specific goals 
arising in the course of specification development, whereas our efforts have concentrated on 
problem-independent goals. 

In the Programmer's Apprentice project (Rich, Schrobe, and Waters 1979; Waters 1985), the aim-
to build a tool that will act as an intelligent assistant to a skilled programmer-focuses on a different 
part of the software development activity than our work; however, much of what they have found 
has relevance to our enterprise. In their approach, programs are constructed by combining 
algorithmic fragments stored in a library. These algorithmic fragments are expressed using a 
sophisticated plan representation, with the resulting benefit of being readily combinable and 
identifiable. Their more recent project on supporting requirements acquisition, the Requirements 
Apprentice (Reubenstein and Waters 1989), addresses the early stages of the software development 
process and includes techniques that are similar to those of the Programmer's Apprentice but that 
operate on representations of requirements. The use of the Programmer's Apprentice is, thus, 
centered on the selection of the appropriate fragment and its composition with the growing 
program, with minor transformations to tailor these introduced fragments. In contrast, our approach 
centers on the selection of the appropriate evolution transformations and the reformulation of 
abstract descriptions of system behavior using such transformations. However, the two approaches 
are closely, related. Many evolution transformations instantiate cliches as part of their function. We 
are currently explring ways of making these cliches more explicit in our transformation system. 

Karen Huff (Huff and Lesser 1987) developed a software process modeling and planning system 
that is in some ways similar to ours. Her GRAPPLE language for defining planning operators 
influenced our representation of evolution transformations. Conversely, her metaoperators applying 
to process plans were influenced by our work on evolution transformations. 

Kelly and Nonnenmann's WATSON system (chapter 3) constructs formal specifications of 
telephone system behavior from informal scenarios expressed in natural language. Their system 
formalizes the scenarios and then attempts to incrementally generalize the scenarios to produce a 
finite-state machine. Their system is able to assume significant initiative in the formalization 



process because the domain of interest, namely, telephony, is highly constrained and because the 
programs being specified, call-control features, are re1atively small. Our Work is concerned with 
larger, less constrained design problems where greater analyst involvement is needed. It is also 
aimed toward the construction of specific behaviors that start from general requirements. 
Nevertheless, we have recognized for some time that acquisition from scenarios is a useful 
complement to the work we are doing in highly constrained design situations (Johnson 1986; 
Benner and Johnson 1989). 

The PRISMA project (Nislder, Malbaum, and Schwabe 1989) is also a system for assisting in the 
construction of specifications from requirements. It has the following main characteristics: First are 
multiple views of the (emerging) specification, where the views that they explored are data flow 
diagrams, entity-relationship models, and Petri nets. Second, each view is represented in the same 
underlying semantic net formalism but represents a different aspect of the specification. This 
representation is suited to graphical presentation and admits to certain consistency and 
completeness heuristics whose semantics depend on the view being represented. For example, the 
lack of an input link has a different interpretation in each diagram. In a data flow diagram it 
indicates a process-lacking input; in an entity-relationship diagram it indicates an entity with no 
attributes; and in a Petri net diagram it indicates an event with no preconditions (prior events). 
Third, heuristics exist to compare the different views of (different aspects of) the same specification 
and aid in constructing new views or support checking for partial consistency between views. 
Fourth, errors detected by these heuristics are added to an agenda of tasks requiring resolution 
along with advice on how to accomplish this resolution. Fifth, a paraphraser produces natural 
language presentations of many of the kinds of information manipulated by the system (for 
example, of the requirement information represented in the different views, the agenda of tasks and 
advice for performing these tasks, the results of the heuristics that detect uses of requirement 
freedoms). 

There is a striking similarity between the approach of the PRISMA project and ours - the use of 
multiple views, their presentations, and an underlying semantic net formalism. These researchers 
clearly thought about and developed heuristics to operate on or between views, an aspect that we 
only recently began to address. Conversely, we provided more support for evolution. 
 

An Example of Transformational Specification Development 
 
Our transformational approach to specification development is not specific to any particular 
domain. We examined several different domains, including hospital patient monitoring systems and 
library systems. However, to demonstrate the power and scalability of the approach, we devoted 
significant effort ~ a particular domain, namely air traffic control. We have been modeling 
requirements for the Berlin Air Route Traffic Control Center (BARTIC) for air , traffic control in 
the airspace around Tempelhof Airport in Berlin. We also studied the requirements for U.S. 
domestic in-route air traffic control systems, that is, those systems responsible for the control of air 
traffic cruising at the high altitudes reserved for jet aircraft. These requirements are drawn from 
manuals on pilot and controller procedures (Aviation Supplies 1989; Air Traffic Operations 1989) 
and the experiences of the current Federal Aviation Administration Advanced Automation Program 
(Hunt and Zellweger 1987), whose goal is to develop the next generation of air traffic control 
systems. 

In this chapter, we focus on a particular part of the air traffic control problem. One duty of an air 
traffic control system is to monitor the progress of controlled aircraft and ensure that they adhere to 



their planned courses. We examine how the process of monitoring aircraft flights is transformed 
during specification development. 

Figure 1. Initial Context Diagram of the Air Traffic Control System 
 
Figure 1 shows an initial view of aircraft course monitoring. We use a context diagram, which 

shows the interactions between a system and its external environment and the information that 
flows between them. In these diagrams, ovals denote processes, boxes and miscellaneous icons 
denote objects, and double circles indicate system boundaries. The diagram distills course 
monitoring to its essential elements: the interaction between aircraft and the air traffic control 
system. The air traffic control system has a process called Ensure-On-Course as one of its 
subfunctions. It examines the location of the aircraft and compares it against the aircraft's expected 
location. If the two are sufficiently different. the air traffic control system attempts to affect a 
course change, changing the location of the aircraft. 

This abstracted view of the air traffic control system is useful as a basis for stating course 
monitoring requirements. It is a natural abstraction for the domain, corresponding to the way flight 



procedures are commonly described in flight manuals (Aviation Supplies 1989). We do not go into 
details here about how much the expected location and the actual location are permitted to differ. 
Instead, we discuss how any such requirements can be transformed into specifications of system 

 

function. 

Figure 2. Detailed Context Diagram of the Air Traffic Control System 
 

igure 2 shows a detailed view of the air traffic control process: More of the agents of the 
pr

F
oposed system are introduced, specifically, radars and controllers. The air traffic control system 

is no longer viewed as a single agent; instead, there are two classes of agents, the air traffic control 
computer system and the controllers. Determining the locations of the aircraft is performed as 
follows: The radar observes the aircraft and transmits a set of radar messages, indicating that targets 
have been observed at particular locations. A Track-Correlation function inputs these radar 



messages and processes them to produce a set of tracks. Each track corresponds to a specific 
aircraft; the locations of the tracks are updated as the aircraft positions change. Meanwhile, 
expected aircraft locations are computed from the aircraft flight plans, which, in turn, are input by 
the controllers. The Ensure-On-Course process is modified so that it issues notifications to the 
controller (by signaling Must-Change-Course for an aircraft); the controller then issues commands 
to the aircraft over the radio. 

 
Figure 3. Intermediate Context Diagram of Air Traffic Control System 

 
o get to this detailed level of description, a number of transformations must be performed. Most 

of
T
 the transformations have to do with designing the pattern of data flow through the system. We 

implemented a number of the evolution transformations necessary to carry out this transformation 
process. The most important one is called Splice-Data-Accesses. Figure 3 shows the result of 
applying this transformation to the version in figure 1. It operates as follows: In the initial version, 
Ensure-On-Course directly accesses aircraft locations. Splice-Data-Accesses is used to introduce a 
new class of object, called Track, which has a location that matches the aircraft's location. The 



Ensure-On-Course process is modified in a corresponding way to refer to the track locations instead 
of the aircraft locations.  

This example is typical of how evolution transformations work. The transformation modifies one 
as

leting the derivation of this example requires further application of the following 
tr

Characterizing Transformations Along Dimensions of Semantic Properties 
 

he fundamental idea underlying our work is the ability to view a specification along a number of 

tion for presenting it, transformations 
w

pect of the specification (data flow) and keeps other aspects fixed (for example, the function of 
Ensure-On-Course). It accomplishes this through systematic changes to the specification. In this 
case, the transformation scans the definition of Ensure-On-Course looking for references to 
Location-of; each of these references is replaced with a reference to the Track-Location attribute of 
tracks. 

Comp
ansformations: Splice-Data-Accesses is again applied to introduce the object Radar-Message, 

which is an intermediate object between Aircraft and Track. Maintain-Invariant-Reactively is 
invoked to construct processes for continuously updating the radar messages and the tracks. A 
transformation called Install-Protocol is used to introduce a notification protocol between the 
Ensure-On-Course process and the controller, so that Ensure-On-Course issues notifications to the 
controller whenever the location of the aircraft must be changed. A new process called Course-
Prediction is added to compute expected locations from flight plans. Through this derivation, the 
specification is gradually refined into a version in which each system component interacts only 
with those data and agents that it will be able to interact with in the implemented system. The 
specification is now ready for detailed design and implementation. 
 

T
different semantic dimensions, for example, a data flow dimension and an entity-relationship 
dimension. We then characterize our evolution transformations by the effects they induce along 
each dimension; for example, one transformation might add a new node to the entity-relationship 
dimension without changing the data flow. Network notations such as entity-relationship diagrams 
and data-flow diagrams are commonly in describing systems; we take the logical progression of 
this idea and describe each of our dimensions as a semantic network of nodes and links (relations) 
connecting these nodes. Based on these descriptions, we characterize the effects of an evolution 
transformation in terms of generic network-modification operators (for example, add a node; insert 
a link between two nodes) applied to the various dimensions. 

Given the right network abstraction and an appropriate nota
ith complex effects can be viewed simply and intuitively. However, our approach goes beyond 

simply providing editors for particular diagrams, as is common in CASE tools. Additionally, we 
draw a strong distinction between the representation of specifications, such as a semantic network, 
and the presentation of specifications. This idea was previously introduced in the Knowledge-
Based Requirements Assistant and other systems with advanced user interfaces. Because we define 
our transformations in terms of the representation rather than the presentation, the same 
transformation can be applied to any presentation that depicts the affected semantic dimensions. 
Some transformations can simultaneously affect multiple semantic dimensions, resulting in changes 
to an even broader range of presentations. Thus, for example, Splice-Data-Accesses changes both 
the information flow of a system (by rerouting data accesses) and the entity-relationship model of 
the system (by introducing new intermediate objects and attributes). The system's information flow 
can be viewed using a context diagram or a more conventional data flow diagram; the system's 



entity-relationship model can be viewed using an entity-relationship diagram or an inheritance 
hierarchy diagram. 
 
Background: An Outline of Our Specification Semantics 
 
To understand the semantic dimensions and their effects, we must give an overview of the semantic 
concerns that we attempt to represent and manipulate. Our goals have been to (1) represent 
semantic concerns that are commonly recognized as important in requirements engineering and AI, 
(2) support the translation of commonly used notations into and out of our framework, and (3) 
support our own research in requirements modeling and design. The result is a semantic framework 
that supports many common notations. 

The basic units of the ARIES system descriptions are types, instances, relations, events, and 
invariants. These units are grouped with a simple modularization mechanism called folders. The 
treatment of types, instances, and relalations is compatible with most object-oriented approaches to 
requirements engineering (for example, Hagelstein 1988). However, our entity-relationship model 
is more general and expressive than most in supporting a wide range of entity-relationship 
notations. For those readers who are familiar with such systems, the following list summarizes the 
specific features that our entity-relationship system supports: First, each type can have multiple 
subtypes and supertypes. Second, each instance can simultaneously belong to any number of types. 
Third, relations hold among any types of objects; there is no restriction that these types be primitive 
with respect to any particular machine representation. Fourth, relations need not be binary but can 
have arbitrary arity. Fifth, relations are fully associative; there is no need for separate relations to 
record the inverse of a given relation. 

System descriptions can describe behavior over time, modeled as a linear sequence of states. 
Each state is fully described in terms of what instances exist, what relations hold between them, and 
what events are active. 

Events subsume all system processes and external events described as part of a system 
description. Events have duration, possibly spanning multiple states in a behavior and involving 
multiple entities of the system. Events can have preconditions, postconditions, and methods 
consisting of procedural steps. They can explicitly be activated by other events or can 
spontaneously occur when their preconditions are met. They can have input and output. 

Not all interactions with an event must occur through its input and output ports. It is often useful, 
particularly at the early stages of system specification, to describe events without concern for the 
specific input and output. For example, the early version of the Ensure-On-Course event described 
in An Example of Transformational Specification Development directly observed aircraft and 
modified their locations. An aircraft cannot be considered an input in the conventional sense here. 
Event declarations whose purpose is to describe activity, rather than specify particular artifacts, 
tend to have this flavor. Information flow here refers to any transfer of information between agents 
and their environment. The transformation example in An Example of Transformational 
Specification Development is aimed at transforming idealized information flows into concrete data 
flows. 

Invariants are predicates that must hold during all states in the system. Invariants are divided into 
subclasses according to their intended function. Domain axioms are predicates about the 
environment that are assumed to hold, such as the configuration of airspaces. These invariants will 
hold regardless of what the system being specified might or might not do. Functional constraints 
are invariants that involve the system being specified or that are to be guaranteed by the system 



being specified. Thus, they are a kind of functional requirement and must explicitly be 
implemented or respected in the system being specified. An example of such a constraint is the 
requirement that aircraft not deviate from their designated courses by more than a set amount. 
Dependency links are established during the design process between such requirements and the 
events or other specification components (for example, Ensure-On-Course) that are intended to 
satisfy them. 

Folders are used to organize specification information. Each folder contains a set of concept 
definitions. A folder can inherit from other folders, meaning that concepts within the folder can 
refer to concepts appearing in the inherited folders. A folder can also import specific concepts from 
other folders; for example, it can be used to select the correct concept if the inherited folders 
contain multiple concepts of the same name. It is also possible to give inherited concepts new 
names In the context of a folder, for example, renaming an inherited concept direction to heading. 
Folders are the principal mechanism for encapsulation and reuse. ARIES has an extensively 
populated library of generic and domain-specific folders. 

As part of our current research, we are investigating the use of parameterized folders. 
Parameterized folders contain free variables, which must be bound when the folder is used. An 
example of such a folder is tracker-concepts, which defines concepts related to tracking, such as 
trajectories, location prediction, and smoothing. This folder contains a free variable, tracked-object-
type, which is the type of the object being tracked (for example, aircraft). Such folders are used by 
instantiating a copy of the folder with the the variables bound, for example, specifying that the 
value of tracked-object-type is aircraft. The result is the definition of a tracker of aircraft positions. 
Such parameterized folders are an important mechanism for representing requirement cliches, as in 
the Requirements Apprentice (Reubenstein and Waters 1989). Many transformations introduce 
specification constructs having a stereotypic form; Splice-Data-Accesses is one such 
transformation. The form of the intermediate object created by this transformation can be stored in 
a folder and instantiated as needed. We expect to make increasing use of such parameterized 
folders in our transformation library. 

Associated with specification components are a variety of attributes, including nonfunctional 
ones. We do not dwell on these details here (see Harris [1988]). The main conclusion that the 
reader should draw from this discussion is that most important requirement notations can be 
captured in this framework, particularly those employing diagrams. Likewise, knowledge 
representation schemes oriented toward concept modeling are readily accommodated in this 
scheme as well. The framework was partly implemented in two systems: ARIES and the KBSA 
Concept Demonstration system (DeBellis 1990). The following translators were implemented to 
translate several notations into or out of (or both) this ARIES framework (for translation out of 
ARIES, this function is only possible for those concepts for which a corresponding concept exists 
in the target): GIST (Balzer et al. 1983), (most ot) the REFINE language (derived from the V 
language [Reasoning Systems 1986]), (most ot) LOOM (MacGregor 1989), entity-relationship 
diagrams, concept hierarchies, and ENGLISH (Grove et al. 1971) (but only from ARIES into 
ENGLISH [Swartout 1982]; we have not pursued natural language understanding as input). 
Translators for context diagrams, state-transition diagrams, and information flow diagrams are 
currently under development. 
 
Dimensions of Semantic Properties 
 



In our studies of specification evolution, we have found the following dimensions of semantic 
properties to be important for characterizing the changes that occur: (1) the modular organization of 
the specification, that is, which concepts are components of which folders and which folders inherit 
from which folders; (2) the entity-relationship model defined in the specification, that is, what 
relations might hold for each type, what attributes it can have, what generalizations and 
specializations are defined, and what instances are known; (3) information flow links, indicating for 
each process or event what external information it accesses, what facts about the world it can 
change, and what values are computed and supplied; (4) control-flow links, indicating what process 
steps must follow a given process step and what process steps are substeps of a given process step; 
and (5) state-description links, associating statements and events with preconditions and 
postconditions that must hold in the states before and after execution, respectively. 

Each semantic dimension is modeled using a collection of relations, each representing one aspect 
of the dimension previously described. Thus, for example, the entity-relationship model is captured 
using the relations specialization-of, parameter-of, type-of, instance-of, and attribute-of. This model 
makes distinctions that are missing from many of the notations being supported. Thus, entity-
relationship diagrams typically show specialization-of as just another relation in the application's 
data model. Here, it treated not as part of the application's data model but of ARIES'S language for 
structuring data models. 

This semantic model captures information beyond what conventional notations typically show; 
however, conventional diagrams can easily be generalized to capture such information. For 
example, entity-relationship diagrams are generally used only to show relationships among types, 
whereas our entity-relationship dimension also includes instances. However, entity-relationship 
style diagrams could also be used to describe instances. The information flow dimension 
generalizes conventional data flow; it captures the flow of information that is not mediated by 
conventional message passing. Thus, we can describe air traffic control as monitoring aircraft 
locations and changing them without implying that the aircraft are somehow sending location 
messages to the air traffic control system. Still, we can easily generalize conventional data flow 
diagrams to show such abstract information flow. 
 
Generic Network-Modification Operations 
 
Because we represent each semantic dimension as a semantic network of nodes and relations, we 
are able to identify a number of generic network-modification operations that apply to any semantic 
network and, thus, to each semantic dimension. The most primitive network-manipulation 
operations are insert and remove for adding and deleting links and create and destroy for creating 
and destroying objects. The meaning of an operation depends on the semantic dimension to which 
it is applied and the relation being affected; thus, for example, the operation of adding a link in the 
information flow dimension could mean making a process access information about an external 
object, whereas the same operation in the entity-relationship dimension could mean making one 
type become a specialization of another. 

In addition to these primitive operations, we identified a number of frequently recurring complex 
operations: 

 
• Update –  Remove a link from one node, and add it to another node. 
• Promote (a specialization of update) – if one of the linked nodes is part of an ordered lattice, 

then update the link so that it connects a higher node in the lattice. 



• Demote (the opposite of promote) – move the link to a lower node in the lattice. 
• Splice – Remove a link from between two nodes A and B, and reroute the connection through a 

third node, C, so that A is linked to C, and C is linked to B. 
• Split – Replace a node A with two links B and C, linked in some fashion, where B and C divide 

the attributes of A. 
• Join – Replace two nodes A and B with a node C, merging their attributes. 
 
Examples of Dimensions of Semantic Properties and Changes within Them 
 
We sketch some instances of semantic properties that arise in our specification of air traffic control. 
These examples show how information is actually captured along the different dimensions 
previously outlined and illustrate the semantic distinctions that are made along each dimension. 

Modular Organization: The concepts of mass, direction, mobile object, and location are 
components of the physical-object folder. The concepts of aircraft, airport, control tower, and so 
on, are components of the ate-model folder. Three folders are inherited folders of the ate-system 
folder: (1) atc-model, containing objects and activities common to air traffic control; (2) system, 
containing definitions of various categories of systems, for example, signal-processing system; and 
(3) upper-model, a collection of generic concepts for modeling the semantics of natural language 
defined by the PENMAN project (Bateman 1990). The ate-model folder, in turn, has nine inherited 
folders, including physical-objects, vehicle, system, and upper-model. The concepts in a folder can 
be defined in terms of the concepts inherited from other folders, for example, the ate-model's air 
location is defined in terms of the physical object's location.  

Entity-Relationship Model: The specialization relationship is used to express the type 
hierarchy; for example, aircraft is a specialization of vehicle, which, in turn, is a specialization of 
mobile-object. Similarly, the instance-of relationship is used to express which types an object 
belongs to, for example, the bartcc-facility is an instance of the type atc-facility. 

Information Flow: As discussed earlier, information flow involves the transfer of information 
(accesses to, and modifications of, information) between components. For example, the early 
versions of the Ensure-On-Course event access and modify aircraft locations; hence, both kinds of 
information flow links, accesses-fact and modifies-fact, hold between Ensure-On-Course and 
aircraft. Some of these information flows are later transformed into concrete data flows. The data 
flow relationship expresses the flow of data between components, for example, from the radar 
process to the Track-Correlation function and from the Track-Correlation function to the Ensure-
On-Course process. 

Control Flow: There are two kinds of control-flow links: control-substep and control-successor. 
Control-substep captures the flow of control when an event consists of a series of steps; the 
relationship holds between the event and its substeps. For example, Track-Correlation has the 
operation to update an individual track as a substep. Control-successor holds between actions that 
are in temporal sequence; for example, Ensure-On-Course is activated whenever Track-Correlation 
updates tracks. A third category of control link, describing causal relationships between events, will 
need to be included as well, along the lines that Yue (1989) developed for the Specification 
Assistant. 

State Description: Links of this kind are between events and their preconditions and 
postconditions; for example, a precondition to Ensure-On-Course taking action is that an aircraft be 
off course, and its postcondition is that the aircraft be back on course (this postcondition is true at 
least in the early versions of the specification; in later versions, the postcondition is that it has 



triggered the activity of notifying the controller, which ultimately causes the aircraft to return to its 
course). 

The meaning of a modification operation will depend on the semantic dimension to which it is 
applied: In the entity-relationship dimension, to insert a specialization-of link means to assert that 
one concept is a specialization of another, for example, that the type surveillance-aircraft is a 
specialization of the type aircraft. In the information flow dimension, to remove an accesses-fact 
link means to remove accesses to a category of external information from a component; for 
example, to remove access by atc-system to the aircraft location-of relation. For the specialization 
links of the entity-relationship dimension, to splice means to assert that some type is intermediary 
to two other types in the specialization hierarchy; for example, splicing military aircraft between 
aircraft and surveillance aircraft. In the information flow dimension, to splice means to reroute an 
information flow between two components through an intermediary; for example, our earlier 
splicing of track between aircraft and the air traffic control system. In the control-flow dimension, 
to splice means to reroute a direct control flow between two components through an intermediary; 
for example, in the early versions of the specification, there would be a direct control flow from an 
aircraft’s Maneuver process to air traffic control Ensure-On-Course process, whereas in later 
ver1sions, this direct link would have been spliced through the Track-Correlation process. 
 

Transformation Details 
 
We now look in detail at what evolution transformations do and discuss how they operate on the 
semantic network model of specifications. The discussion centers on a particular transformation, 
Splice-Data Accesses. 

Figure 4 shows offline documentation generated by the ARIES system for the Splice-Data-
Accesses transformation. Both ARIES and the Specification Assistant can generate offline 
documentation of transformations (to be included in manuals and reports) and online help. In the 
Specification Assistant, the online help provided guidance for the user about what parameters must 
be supplied to the transformation, what types they should be, and how they should be input. In 
ARIES, this online help is being integrated into the ARIES diagram editing capability currently 
under development. 
 
Transformations Operate on the Metamodel 
 
As described in Background: An Outline of Our Specification Semantics, our systems support 
world modeling in terms of a semantic network of entities and relationships. Events perform 
actions that create or destroy entities and change relationships. At the same time, transformations 
are understood as operating on a semantic network of entities and relationships. Thus, the space of 
possible system descriptions is itself a domain that can be modeled in the ARIES framework. This 
model of specification objects and relationships is called the ARIES metamodel. 

The ARIES metamodel is implemented as a set of types and relations in ARIES. The model is 
divided into two ARIES folders: the User-Metamodel, consisting of those types and relations that 
an ARIES user might need to be aware of, and the Lisp-Environment, consisting of those types and 
relations that are only used internally by ARIES. The user metamodel includes those concepts 
previously described: types, relations, events, invariants, folders, and so on. Outside evaluations of 
the Knowledge-Based Requirements Assistant and the Specification Assistant (Abbott 1989) 



indicated a need for Knowledge-based Software Assistant systems to have an understanding of 
their own system model; this approach provides such a model. 

 

Figure 4. Machine-Generated Documentation for Splice-Data-Accesses 

Splice-Data-Accesses: Transformation
Concept description: Splice a data object into the information-access path from object to an agent or 
activity. The transformation can be applied when the agent or activity, called Accessor, accesses 
some relation Accessed-Relation, which is an attribute of some object Accessed-Object. The 
transformation modifies the definition of Accessor so that it does not access Accessed-Relation 
anymore. It performs this modification as follows. It creates a new type Intermediary-Object, with a 
new attribute Intermediary-Rel, which correspond to Accessed-Object and Accessed-Relation, 
respectively. Every reference to Accessed-Relation in Accessor is replaced with a reference to 
Intermediary-ReI. The result is a specification with the same behavior as before but with a different 
pattern of information flow. 
Note: This transformation creates a new type and new relations. If you instead want to modify existing 
types or relations, you might want to use the more general transformation Generalized-Splice. 
Input parameters: 
   Accessor: Entity: 
      Component currently accessing the relation 
   Accessed-Relation: Entity: Relation currently being accessed directly 
   Accessed-Object: Entity: Object type that Accessed-Relation is an attribute of 
   Intermediary-Object-Type-Name: Entity: 
      Name of type of intermediary object 
   Intermediary-Rel-Name: Entity: 
      Name of new object's relation, to be accessed instead of Accessed-Relation 
   Correspondence-Rel-Name: Entity: 
      Name of new relation mapping old object to new data object 
Output parameters: 
   Intermediary-Object: 
      New object type, named Intermediary-Object- Type-Name 
   Intermediary-Rel: 
      New object's relation, to be accessed instead of Accessed-Relation 
   Correspondence-Rel: 
      New relation mapping old object to the intermediary object 
Precondition: The Accessor must be an event or type declaration. 
Goal: The Accessor does not access the Accessed-Relation. 
Main effects: 
   An Accesses-Fact relation between Accessor and Accessed-Relation is spliced. 
   A Type-Declaration named Intermediary-Object is created. 
   A Relation-Declaration named Intermediary-Rel is created.

 
The ARIES system as a whole is implemented in AP5 (Cohen 1989), a set of database 

programming extensions to Lisp developed at USC/lnformation Sciences Institute. AP5 is the 
language that specifications are compiled into. That is, to test and simulate specifications, 
specifications are compiled into a prototype in AP5 and Lisp so that analysts can set up simulation 
scenarios and run them. In an analogous fashion, the ARIES metamodel is compiled into AP5 types 
and relations. Transformations operate by making queries and assertions to this database, just as a 
prototype of a user specification would. 

One important advantage of AP5 in connection with this work is that it does not assume any 
particular internal data structure for storing relations. Programmers can select whichever data 
structure they see fit. In ARIES, it is convenient to use parse trees as the representation of some of 
the system description components because they contain program text. In ARIES, the POPART 



metaprogramming system is used for this purpose (Wile 1986; Johnson and Yue 1988). However, 
relations that are not directly part of the program text, such as data flow relations, can also be 
captured in the same database. The transformations need not be concerned with the particular 
implementation of the metamodel. Furthermore, an alternate data representation for the ARIES 
metamodel was also implemented in the REFINE programming environment. This implementation 
makes it possible for tools in the ARIES system to operate on specifications developed in the 
KNOWLEDGE-BASED SOFTWARE ASSISTANT Concept Demonstration system, which is 
primarily written in REFINE (Meyers and Williams 1990). 
 
Transformations as Events 
 
Continuing with the metamodel metaphor, transformations are modeled as events in the metamodel 
space. A special folder in ARIES called Transformation-Library contains specifications of all the 
transformations in the system. The same tools for viewing and validating specifications, such as the 
GIST paraphraser, can be applied to transformations. Likewise, transformations are compiled into 
Lisp and AP5 functions that operate on the database model of specifications. The explicit 
specification of transformations enables ARIES to help plan the application of transformations and 
determine their effects. 

Like ordinary events, transformations have input, output, preconditions, goals, and methods. 
These features are illustrated in figure 4. The inputs are the accessed relation and the accessor as 
well as the names of the new types and relations that the transformation creates. These input are all 
typed; the types, such as relation-declaration, are all part of the ARIES metamodel. In general, 
preconditions and goals are used to determine the applicability and effectiveness of 
transformations; here, only a goal is defined. The goal in the case of Splice-Data-Accesses is that 
no information accesses to the spliced relation exist. The method of the transformation is not shown 
because it involves implementation details that are unlikely to interest an analyst. 

Because transformations are specification objects, they can be described using a combination of 
formal descriptions and hypertext. Some of the textual descriptions shown in figure 4 are extracted 
from such hypertext descriptions; some are machine-generated natural language. 
 
Effect Descriptions 
 
The principal effects of each transformation are explicitly recorded as part of the transformation 
definition. Each effect is a generic operation applied to a combination of the transformation's input, 
output, and other related objects that are not directly input or output. In the case of Splice-Data-
Accesses, one splice is performed, and three specification objects are created. 

In general, transformations can have two possible effects: main effects and possible effects. Main 
effects are guaranteed to result from a transformation application (assuming that the goal of the 
transformation is not already satisfied). Possible effects might or might not result, depending on the 
particular situation in which the transformation is applied. 

In principle, it should be possible to employ symbolic evaluation tools, such as those of the 
Specification Assistant, to analyze transformations and automatically determine their effects 
because the transformations are much like any other events. Currently, however, it is not possible, 
and the effect descriptions must be recorded separately by the transformation writer. 
 

Retrieving and Using Transformations 



 
When using a library of operators such as our evolution transformation library, a user must do the 
following: find an appropriate operator, understand what it does, and determine how to apply it to 
achieve the desired effect.These activities are seldom trivial, particularly if the population of the 
library is large, and the effects of the operators are potentially complex. Consequently, we have 
been concerned with providing automated support for these activities. Some new capabilities in 
these directions were recently developed, and further developments are anticipated. 

Effect descriptions are used to assist the transformation retrieval process. The user can specify a 
desired effect in terms of the class of operation and the objects of interest. For each operand, an 
object class can be specified, or a particular specification component object can be referred to. 
Given this description, the retrieval mechanism retrieves three sets of transformations: those that 
are guaranteed to achieve the desired effect, those that might achieve the desired effect but only in 
restricted circumstances, and those that achieve part of the desired effect. 

The next step is to integrate the retrieval mechanism with the presentation editors being 
developed for ARIES by Lockheed Sanders. Each presentation is directly manipulable; the user 
will be able to button on nodes and arcs in diagrams and perform generic operations such as 
Promote or Splice. The user's gesture will be used as a description of an appropriate transformation 
to apply. If the gesture unambiguously indicates a particular transformation, the transformation will 
directly be applied; if not, the user will be asked to disambiguate. 
In another application mode, the user will perform a gesture and ask the system to find all 
transformations that include this gesture as a substep. This request allows the system to suggest 
macrotransformations that the user might be unfamiliar with. Thus, an ARIES user can start by 
using the basic 'gestures to edit a system description and gradually move to progressively more 
powerful and complex transformations. 

It is important to note that the mapping between presentation gestures and 'modification operators 
on the internal representation might be indirect. Figures 4 and 5 show the effects of splicing in the 
radar track into the air traffic control system from both a presentation standpoint and a 
representation standpoint. Internally, an accesses-fact relationship holds between Ensure-On-
Course and Location-OL Externally, however, the individual accesses-fact relationships are not 
depicted. Instead, the label on the information flow arc indicates what relations are being accessed. 
It will be necessary for the presentation system to translate external operations on labels into 
internal operations on arcs. For beginning users to clearly understand the effects of Splice-Data-
Accesses, we demonstrate the transformation on diagrams where each arc has a single label and a 
single direction. According to the semantics of context diagrams, an arc with multiple labels or 
directions can be transformed into an equivalent set of arcs with single labels and directions. In this 
simplified case, the splicing of data accesses directly corresponds to the splicing of information 
flow arcs. 

We have been experimenting with various types of intelligent assistance for the process of 
applying transformations. In the Specification Assistant, a record was kept of each transformation 
that was applied and on what parameters. The analyst could undo a sequence of transformations at 
any time, perform additional changes, and then replay the transformations. The Specification 
Assistant automatically determined whether the transformations were still applicable and, if not, 
requested the developer supply new input for the transformations that could not be applied. This 
mechanism was intended as an aid for supporting the merger of parallel sequences of 
transformation applications. The ARIES system will build on this capability by using goals and 
effect descriptions to help suggest transformations to apply and further determine transformation 



applicability. It will be possible for the system to take design constraints, such as restrictions on 
allowed information flow, and automatically suggest transformations that repair constraint 
violations. 
 

Assessing Library Completeness 
 
The previous analysis gave us the means for determining what transformations to include in our 
library and the basis for assessing the library's completeness. We distinguish two categories of 
transformations: basic transformations, which perform some simple operation along one or more 
dimensions, and macro transformations, which perform multiple operations. We have been 
extending the basic transformation set to cover all types of operations along all dimensions. 
Macrotransformations are defined as compound transformations, achieving their effect by invoking 
a combination of the basic transformations. 

Splice-Data-Accesses is an example of such a macrotransformation. Another is Add-Disjoint-
Subtypes, first described by Balzer (1985). This transformation defines two disjoint subtypes of a 
specified type and revises the signatures of all relations over the type so that they are instead 
restricted to one subtype or the other. The operations of adding the subtypes and specializing the 
relations are distinct operations, which could be performed independent of each other. Therefore, 
we realized these individual operations in separate transformations, Add-Specialization and 
Specialize-Parameter. AddDisjoint-Subtypes now invokes these other transformations as substeps. 
Users are free to either use the larger command or directly invoke the substeps for some other 
purpose. 

Although the space of possible macrotransformations is unlimited, the space of basic 
transformations is limited, and we are attempting to achieve complete coverage of the space. At a 
minimum, we must ensure that each type of link operation can be performed on each type of link 
and each type of node. 

In one sense, this degree of coverage is almost trivially achievable, given suitable general 
transformations. For example, there is a general Update-Attribute transformation that can update 
any attribute of any type; this transformation can be used to affect any update operation. There are 
three reasons why additional work is involved. 

First, various types of nodes have necessary conditions associated with them. For example, every 
concept must have a name and must be part of a folder. Every node type that has distinct conditions 
should have an associated transformation that can properly create instances of it. 

Second, constraints exist among the possible relationships between nodes. 
Transformations must respect these constraints. For example, the accessesfact relations on an event 
must be consistent with the procedural definition of the event. If the definition accesses some piece 
of information, then an accesses-fact relation must hold between the event and the accessed 
information. It is not good enough for a transformation to modify the accesses-fact relation by 
itself; it must also modify the parts of the definition that entail the accesses-fact relation (as is done 
by Splice-Data-Accesses). 

Because our effect descriptions are partial characterizations, there can be more than one possible 
way to achieve the same effect. For example, there are many ways to split a node, depending on 
how the attributes of the split node are divided. Thus, it is not enough to require that every kind of 
node can be split; we must capture each method of node splitting that commonly occurs. We can 
discriminate among such methods in terms of the links that they affect. 



This analysis provides solid guidelines for assessing transformation coverage. Once we provide 
transformations that perform each possible operation, obeying all constraints, and account for the 
different possible side effects that can occur, then we can be confident that the library will meet 
arbitrary user needs. There is still room for variation about how the transformations achieve their 
required effects, of course. For example, a transformation creating a concept can satisfy the well-
formedness constraint that the type be named in several ways (for example, ask the user for a name, 
or construct a new name at random). We cannot guarantee that our approach to satisfying this 
constraint (asking the user) will satisfy all users. However, we can expect the basic function of the 
transformation to agree with user expectations. 

Previous work in the development of reusable component libraries has generally been unable to 
provide methods for assessing library completeness along the lines identified here. For example, 
Prieto-Diaz and Freeman (1987) factor software component properties along a number of different 
dimensions but fail to establish a taxonomic hierarchy along any dimension. Thus, there is no way 
to determine whether one component is more general in applicability than another. Systems that 
rely on a classification hierarchy of objects (Allen and Lee 1989; see chapter 5) primarily classify 
on the basis of input and object types. Without a notion of generic operations, the classification of 
effect is ad hoc at best. By restricting our classification to a particular kind of software component, 
namely, evolution transformations, we are able to do a much better job of classifying our 
components. 
 

Applicable Results and Future Challenges 
 
Formalized evolution transformations are a potential benefit to all software-evolution activities, not 
just specification development. The analysis of transformations in this chapter provides a 
framework for applying evolution transformations to other languages. Any language that supports 
the mechanical derivation of semantic relations on software objects is a candidate for formalized 
evolution. Strongly typed languages such as Ada and Pascal fit in this category. In the case of 
languages with poor typing mechanisms, annotations introduced by designers can help. For 
example, Andersen Consulting’s Basic Assembler Language Software Reengineering Workbench 
provides interactive tools for reengineering assembly language programs (chapter 1). Design 
information is captured through a combination of automatic tools and manual entry. Andersen is 
considering implementing evolution transformations that operate on such reengineered programs. 

This chapter described the semantic basis for developing a reusable library of transformations. 
Work on extending the library coverage is ongoing. The main technical challenges that remain have 
to do with providing sufficient automated support for the transformation retrieval and application 
processes and for deriving effects and preconditions of transformations from their method bodies. 
Given the work accomplished to date, we believe that it will be straightforward to develop a system 
that retrieves transformations through the iterative reformulation of queries, as in BACKBORD 
(Yen, Neches, and DeBellis 1988) and that guides the user in applying the transformation to 
achieve the desired effect. We envision that the system will ultimately take an active role in the 
interactive planning of specification changes. Failed preconditions on transformations could then 
trigger a search of the transformation library for transformations that could make the preconditions 
true. The system could provide suggestions at each stage about what transformations could be 
appropriate to perform. 
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